Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

내용 주소화 기억장치와 딥 러닝

바로 가기: 차이점, 유사점, Jaccard 유사성 계수, 참고 문헌.

내용 주소화 기억장치와 딥 러닝의 차이

내용 주소화 기억장치 vs. 딥 러닝

용 주소화 기억장치(Content-addressable memory)는 매우 빠른 속도를 요하는 탐색 애플리케이션에서 사용되는 특수한 메모리이. 딥 러닝(), 심층학습(深層學習)은 여러 비선형 변환기법의 조합을 통해 높은 수준의 추상화(abstractions, 다량의 데이터나 복잡한 자료들 속에서 핵심적인 내용 또는 기능을 요약하는 작업)를 시도하는 기계학습(machine learning) 알고리즘의 집합 으로 정의되며, 큰 틀에서 사람의 사고방식을 컴퓨터에게 가르치는 기계학습의 한 분야라고 이야기할 수 있. 어떠한 데이터가 있을 때 이를 컴퓨터가 알아 들을 수 있는 형태(예를 들어 이미지의 경우는 픽셀정보를 열벡터로 표현하는 등)로 표현(representation)하고 이를 학습에 적용하기 위해 많은 연구(어떻게 하면 더 좋은 표현기법을 만들고 또 어떻게 이것들을 학습할 모델을 만들지에 대한)가 진행되고 있으며, 이러한 노력의 결과로 deep neural networks, convolutional deep neural networks, deep belief networks와 같은 다양한 딥 러닝 기법들이 컴퓨터비젼, 음성인식, 자연어처리, 음성/신호처리 등의 분야에 적용되어 최첨단의 결과들을 보여주고 있. 2012년 스탠포드대학의 앤드류 응과 구글이 함께한 딥 러닝 프로젝트에서는 16,000개의 컴퓨터 프로세서와 10억 개 이상의 neural networks 그리고 DNN(deep neural networks)을 이용하여 유튜브에 업로드 되어 있는 천만 개 넘는 비디오 중 고양이 인식에 성공하였.

내용 주소화 기억장치와 딥 러닝의 유사점

내용 주소화 기억장치와 딥 러닝는 공통적으로 0 가지를 가지고 있습니다 (유니온백과에서).

위의 목록은 다음 질문에 대한 대답입니다

내용 주소화 기억장치와 딥 러닝의 비교.

내용 주소화 기억장치에는 1 개의 관계가 있고 딥 러닝에는 50의 관계가 있습니다. 그들은 공통점 0을 가지고 있기 때문에, Jaccard 지수는 0.00%입니다 = 0 / (1 + 50).

참고 문헌

이 기사에서는 내용 주소화 기억장치와 딥 러닝의 관계를 보여줍니다. 정보가 추출 된 각 기사에 액세스하려면 다음 사이트를 방문하십시오: