Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

군 대상

색인 군 대상

범주론에서, 군 대상(群對象)은 곱을 갖는 범주에서 정의되는, 군의 역할을 하는 대상이.

목차

  1. 29 처지: 리 군, 매끄러운 다양체, 매끄러운 함수, 모노이드, 모노이드 범주, 모노이드 대상, 범주 (수학), 범주론, 곱 (범주론), 대각 사상, 대칭 모노이드 범주, 대수군, 대수다양체, 교차 가군, 군 (수학), 군 스킴, 내적 범주, 스킴 (수학), 작은 범주, 집합, 위상 공간 (수학), 위상군, 역원, 연속 함수, 사상 (수학), 함자 (수학), 함수, 아벨 군, 시작 대상과 끝 대상.

  2. 군론

리 군

리 군(Lie群)은 매끄러운 다양체인 위상군이.

보다 군 대상와 리 군

매끄러운 다양체

미분기하학에서, 매끄러운 다양체() 또는 미분 가능 다양체(微分可能多樣體)는 미적분학을 전개할 수 있는 구조가 주어진 다양체이.

보다 군 대상와 매끄러운 다양체

매끄러운 함수

석학에서, 매끄러운 함수()는 무한 번 미분이 가능한 함수이.

보다 군 대상와 매끄러운 함수

모노이드

상대수학에서, 모노이드()는 항등원을 갖는, 결합 법칙을 따르는 이항 연산을 갖춘 대수 구조이.

보다 군 대상와 모노이드

모노이드 범주

범주론에서, 모노이드 범주(monoid範疇)는 동형 사상 아래 결합 법칙이 성립하고 동형 사상 아래 왼쪽·오른쪽 항등원이 존재하는 이항 연산을 갖는 범주이.

보다 군 대상와 모노이드 범주

모노이드 대상

범주론에서, 모노이드 대상(monoid對象)은 모노이드 범주에서 모노이드와 같은 성질을 가진 대상이.

보다 군 대상와 모노이드 대상

범주 (수학)

범주론에서, 범주(範疇)는 추상적인 구조와 이를 보존하는 변환의 개념을 형식화한 것이.

보다 군 대상와 범주 (수학)

범주론

수학에서, 범주론(範疇論)는 수학적인 구조와 그 사이의 관계를 범주라는 추상적 개체로 다루는 이론이.

보다 군 대상와 범주론

곱 (범주론)

범주론에서, 곱()은 곱집합이나 곱공간의 개념을 일반화한 개념이.

보다 군 대상와 곱 (범주론)

대각 사상

범주론에서, 대각 사상(對角寫像)은 어떤 대상에서 그 거듭제곱으로 가는 표준적인 사상이.

보다 군 대상와 대각 사상

대칭 모노이드 범주

범주론에서, 대칭 모노이드 범주(對稱monoid範疇)는 동형 사상 아래 결합 법칙과 교환 법칙이 성립하고, 동형 사상 아래 항등원이 존재하는 이항 연산을 갖는 범주이.

보다 군 대상와 대칭 모노이드 범주

대수군

수기하학에서, 대수군(代數群)은 대수다양체를 이루는 군이.

보다 군 대상와 대수군

대수다양체

수기하학에서, 대수다양체(代數多樣體)는 국소적으로 다항식들로 주어지는 방정식들의 영점 집합처럼 보이는 공간이.

보다 군 대상와 대수다양체

교차 가군

수적 위상수학에서, 교차 가군(交叉加群)은 2-군의 데이터를 담고 있는 대수적 구조이.

보다 군 대상와 교차 가군

군 (수학)

루빅스 큐브를 돌리는 방법들을 모은 집합은 군을 이룬다. 정이면체군 \operatornameDih(6)의 군 다이어그램 추상대수학에서, 군(群)은 결합 법칙과 항등원과 각 원소의 역원을 가지는 이항 연산을 갖춘 대수 구조이.

보다 군 대상와 군 (수학)

군 스킴

수기하학에서, 군 스킴(群scheme)은 군과 유사한 구조를 갖는 스킴이.

보다 군 대상와 군 스킴

내적 범주

범주론에서, 내적 범주(內的範疇)는 작은 범주의 정의에서 사용되는 집합의 범주를 대체하여, 임의의 범주 속에서 범주처럼 작동하는 구조이.

보다 군 대상와 내적 범주

스킴 (수학)

수기하학에서, 스킴()은 국소적으로 가환환의 스펙트럼과 동형인 공간이.

보다 군 대상와 스킴 (수학)

작은 범주

범주론에서, 작은 범주(-範疇)는 그 대상의 모임과 사상의 모임이 충분히 “작은” 범주를 말. 그 정확한 의미는 사용하는 수학 기초론에 따라 달라지는데, 예를 들어 그로텐디크 전체를 사용할 경우 대상과 사상의 집합이 사용되는 그로텐디크 전체의 원소이어야.

보다 군 대상와 작은 범주

집합

9개의 다각형의 집합을 나타낸 오일러 다이어그램 수학에서, 집합(集合)은 명확한 기준에 의하여 주어진 서로 다른 대상들이 모여 이루는 새로운 대상이.

보다 군 대상와 집합

위상 공간 (수학)

일반위상수학에서, 위상 공간(位相空間)은 어떤 점의 근처(근방)가 무엇인지에 대한 정보를 담고 있지만, 점 사이의 거리나 넓이·부피 따위의 정보를 포함하지 않는 공간이.

보다 군 대상와 위상 공간 (수학)

위상군

에서, 위상군(位相群)은 위상이 주어진 군으로서 위상적 구조와 대수적 구조가 서로 어울리는 경우이.

보다 군 대상와 위상군

역원

역원(逆元,Inverse element)이란, 덧셈에서의 반수와 곱셈에서의 역수를 일반화한 개념이.

보다 군 대상와 역원

연속 함수

위상수학과 해석학에서, 연속 함수(連續函數)는 정의역의 점의 "작은 변화"에 대하여, 치역의 값 역시 작게 변화하는 함수이.

보다 군 대상와 연속 함수

사상 (수학)

수학에서 사상(寫像)은 수학적 구조를 보존하는 함수의 개념을 추상화한 것이.

보다 군 대상와 사상 (수학)

함자 (수학)

범주론에서 함자(函子)는 두 범주 사이의 함수에 해당하는 구조로, 대상을 대상으로, 사상을 사상으로 대응시.

보다 군 대상와 함자 (수학)

함수

수를 상자에 비유한 그림. 수학에서, 함수(函數) 또는 사상(寫像)은 첫 번째 집합의 임의의 한 원소를 두 번째 집합의 오직 한 원소에 대응시키는 대응 관계이.

보다 군 대상와 함수

아벨 군

에서, 아벨 군(Abel群) 또는 가환군(可換群)은 교환 법칙이 성립하는 군이.

보다 군 대상와 아벨 군

시작 대상과 끝 대상

범주론에서, 시작 대상(始作對象)과 끝 대상(-對象)은 매우 단순하여, 이 대상을 정의역 또는 공역으로 하는 사상이 하나밖에 없는 대상이.

보다 군 대상와 시작 대상과 끝 대상

참고하세요

군론

또한 군객체로 알려져 있다.