심벌 마크
유니온백과
통신
다운로드하기 Google Play
새로운! 안드로이드 ™에 유니온백과를 다운로드 할 수 있습니다
비어 있는
브라우저보다 빠른!
 

핵작용소

색인 핵작용소

수해석학에서, 핵작용소(核作用素)는 그 성분들의 p거듭제곱들의 합이 수렴하는 콤팩트 작용소이.

33 처지: 동치, 르베그 공간, 바나흐 공간, 바나흐 대수, 벡터 공간, 고윳값, 복소수, 분해 가능 공간, 급수, 대각합, 내적 공간, 노름 공간, 다비트 힐베르트, 특잇값, 힐베르트 공간, 자기 수반 작용소, 작용소 노름, 이산 공간, 절대수렴, 정규 직교 기저, 존 폰 노이만, 콤팩트 작용소, 유계 작용소, 유니터리 작용소, 에르미트 수반, 에르하르트 슈미트, 연결 공간, 열린집합, 선형 변환, 함수해석학, 아이디얼, 텐서곱, 실수.

동치

수학과 논리학에서 동치(同値)란 두 문장이 논리적으로 같다는 것을 의미.

새로운!!: 핵작용소와 동치 · 더보기 »

르베그 공간

수해석학에서, 르베그 공간(Lebesgue空間) 또는 Lp 공간()은 절댓값의 p승이 르베그 적분 가능한 가측 함수들의 동치류들로 구성된 노름 공간이.

새로운!!: 핵작용소와 르베그 공간 · 더보기 »

바나흐 공간

수해석학에서, 바나흐 공간(Banach空間)은 완비 노름 공간이.

새로운!!: 핵작용소와 바나흐 공간 · 더보기 »

바나흐 대수

수해석학에서, 바나흐 대수(Banach代數)는 바나흐 공간과 결합 대수의 구조를 서로 호환되게 갖춘 집합이.

새로운!!: 핵작용소와 바나흐 대수 · 더보기 »

벡터 공간

선형대수학에서, 벡터 공간(vector空間)은 원소를 서로 더하거나, 주어진 배수로 늘이거나 줄일 수 있는 공간이.

새로운!!: 핵작용소와 벡터 공간 · 더보기 »

고윳값

위 두 장의 그림은 원래 이미지가 옆으로 기울어진 모양으로 변하는 선형 변환을 보여주고 있다. 이 선형 변환에서 수평 축은 그대로 수평 축으로 남기 때문에 푸른색 화살표는 방향이 변하지 않지만 붉은색 화살표는 방향이 변하게 된다. 따라서 푸른색 화살표는 이 변환의 '''고유 벡터'''가 되고 붉은색 화살표는 고유 벡터가 아니다. 또한 푸른색 화살표의 크기가 변하지 않았으므로 이 벡터의 '''고윳값'''은 1이다. 선형대수학에서, 선형 변환의 고유 벡터(固有vector)는 그 선형 변환이 일어난 후에도 방향이 변하지 않는, 영벡터가 아닌 벡터이.

새로운!!: 핵작용소와 고윳값 · 더보기 »

복소수

수학에서, 복소수(複素數)는 a+bi (a,b는 실수) 꼴의 수이.

새로운!!: 핵작용소와 복소수 · 더보기 »

분해 가능 공간

일반위상수학에서, 분해 가능 공간(分解可能空間)은 가산 집합이 조밀 집합일 수 있을 정도로 작은 위상 공간이.

새로운!!: 핵작용소와 분해 가능 공간 · 더보기 »

급수

수학에서, 급수(級數)는 수열의 모든 항을 더한 것이.

새로운!!: 핵작용소와 급수 · 더보기 »

대각합

선형대수학에서, 대각합(對角合)은 정사각 행렬의 주대각선 성분들의 합이.

새로운!!: 핵작용소와 대각합 · 더보기 »

내적 공간

적을 사용하여 정의한, 두 벡터 사이의 각도의 기하학적 해석 선형대수학과 함수해석학에서, 내적 공간(內積空間)은 두 벡터의 쌍에 스칼라를 대응시키는 일종의 함수가 주어진 벡터 공간이.

새로운!!: 핵작용소와 내적 공간 · 더보기 »

노름 공간

선형대수학 및 함수해석학에서, 노름 공간(norm空間)은 원소들에 일종의 ‘길이’ 또는 ‘크기’가 부여된 벡터 공간이.

새로운!!: 핵작용소와 노름 공간 · 더보기 »

다비트 힐베르트

비트 힐베르트(1862년 1월 23일~1943년 2월 14일)는 독일의 수학자이.

새로운!!: 핵작용소와 다비트 힐베르트 · 더보기 »

특잇값

유클리드 공간 위의 선형 변환은 단위 공을 타원체로 대응시키며, 선형 변환의 특잇값들은 타원체의 주축 반지름들이다. 함수해석학에서, 특잇값(特異값)은 콤팩트 작용소와 그 에르미트 수반의 합성의 고윳값의 제곱근이.

새로운!!: 핵작용소와 특잇값 · 더보기 »

힐베르트 공간

수해석학에서, 힐베르트 공간(Hilbert空間)은 모든 코시 열의 극한이 존재하는 내적 공간이.

새로운!!: 핵작용소와 힐베르트 공간 · 더보기 »

자기 수반 작용소

작용소 이론에서, 자기 수반 작용소(自己隨伴作用素)는 스스로의 에르미트 수반이 자신과 같은 작용소이.

새로운!!: 핵작용소와 자기 수반 작용소 · 더보기 »

작용소 노름

수해석학에서, 작용소 노름(作用素norm)은 두 노름 공간 사이의 유계 작용소에 대하여 정의되는 노름이.

새로운!!: 핵작용소와 작용소 노름 · 더보기 »

이산 공간

일반위상수학에서, 이산 공간(離散空間)은 모든 부분집합이 열린집합인 위상 공간이.

새로운!!: 핵작용소와 이산 공간 · 더보기 »

절대수렴

수학에서, 무한급수의 항들의 절댓값들을 구하여 이의 합이 수렴할 때, 이 무한급수가 절대수렴(絶對收斂, 영어: absolute convergence).

새로운!!: 핵작용소와 절대수렴 · 더보기 »

정규 직교 기저

힐베르트 공간 이론에서, 정규 직교 기저(正規直交基底)는 주어진 힐베르트 공간의 원소를 ℓ2 수렴 계수의 가산 선형 결합으로 나타낼 수 있는 기저 벡터들의 집합이.

새로운!!: 핵작용소와 정규 직교 기저 · 더보기 »

존 폰 노이만

존 폰 노이만(1903년 12월 28일 - 1957년 2월 8일)은 헝가리 출신 미국인 수학자이.

새로운!!: 핵작용소와 존 폰 노이만 · 더보기 »

콤팩트 작용소

수해석학에서, 콤팩트 작용소(compact作用素)는 유계 집합의 상이 상대 콤팩트 부분공간인 바나흐 공간 사이의 선형 변환이.

새로운!!: 핵작용소와 콤팩트 작용소 · 더보기 »

유계 작용소

수해석학에서, 유계 작용소(有界作用素)는 유계 집합을 항상 유계 집합에 대응시키는, 두 위상 벡터 공간 사이의 선형 변환이.

새로운!!: 핵작용소와 유계 작용소 · 더보기 »

유니터리 작용소

수해석학에서, 유니터리 작용소(unitary作用素)는 힐베르트 공간의 자기동형사상이.

새로운!!: 핵작용소와 유니터리 작용소 · 더보기 »

에르미트 수반

작용소 이론에서, 에르미트 수반(Hermite隨伴)은 행렬의 켤레전치의 개념을 임의의 힐베르트 공간에 대하여 일반화시킨 개념이.

새로운!!: 핵작용소와 에르미트 수반 · 더보기 »

에르하르트 슈미트

에르하르트 슈미트(1876~1959)는 독일의 수학자이.

새로운!!: 핵작용소와 에르하르트 슈미트 · 더보기 »

연결 공간

A는 유클리드 평면의 연결 부분 공간이며, B는 비연결 부분 공간이다. 일반위상수학에서, 연결 공간(連結空間)은 공집합이 아닌 두 열린집합으로 쪼갤 수 없는 위상 공간이.

새로운!!: 핵작용소와 연결 공간 · 더보기 »

열린집합

부, 즉 원의 중심으로부터 반지름 미만의 거리에 위치한 점들의 집합은 열린집합이다. 반대로, 경계를 포함하는 원판, 즉 원의 중심으로부터 반지름 이하의 거리에 위치한 점들의 집합은 닫힌집합이다. 일반위상수학에서, 열린집합(-集合) 또는 개집합(開集合)은 스스로의 경계를 전혀 포함하지 않는, 위상 공간의 부분 집합이.

새로운!!: 핵작용소와 열린집합 · 더보기 »

선형 변환

선형대수학에서, 선형 변환(線型變換) 또는 선형 사상(線型寫像) 또는 선형 연산자(線型演算子) 또는 선형 작용소(線型作用素)는 선형 결합을 보존하는, 두 벡터 공간 사이의 함수이.

새로운!!: 핵작용소와 선형 변환 · 더보기 »

함수해석학

수해석학(函數解析學)이란 벡터 공간과 연산자들에 대해 다루는 해석학의 한 분야이.

새로운!!: 핵작용소와 함수해석학 · 더보기 »

아이디얼

환론에서, 아이디얼() 또는 이데알()은 특정한 조건을 만족시키는 환의 부분집합이.

새로운!!: 핵작용소와 아이디얼 · 더보기 »

텐서곱

환론에서, 텐서곱()은 두 쌍가군 또는 가군 또는 결합 대수에 대하여 정의할 수 있는 이항 연산이.

새로운!!: 핵작용소와 텐서곱 · 더보기 »

실수

실수을 수직선으로 나타낸 것 수학에서, 실수(實數)는 주로 실직선 위의 점 또는 십진법 전개로 표현되는 수 체계이.

새로운!!: 핵작용소와 실수 · 더보기 »

여기로 리디렉션합니다

대각합류 작용소, 힐베르트-슈미트 작용소.

나가는들어오는
이봐 요! 우리는 지금 Facebook에 있습니다! »