목차
결정 문제
산 이론에서 결정 문제(decision problem, 판정 문제)란 어떤 형식 체계에서 예-아니오 답이 있는 질문을 말..
부분집합
부분집합 관계를 표현한 벤 다이어그램. ''A''는 ''B''의 부분집합이다. 집합론에서 집합 B의 부분집합(部分集合) A는, 모든 원소가 B에도 속하는 집합이.
비결정론적 튜링 기계
비결정론적 튜링 기계(nondeterministic Turing machine, NTM)는 튜링 기계에서 특정 상태에서 움직일 수 있는 상태의 개수가 하나로 정해져 있지 않은 경우를 말. 이것은 비결정론적 유한 오토마타와 유사한 개념이.
다항 시간
항 시간(多項時間)은 어떠한 문제를 계산하는 데에 걸리는 시간 m(n)이 문제의 크기 n의 다항식 함수보다 크지 않은 것을 가리.
튜링 기계
링 기계의 작동 방식을 묘사하는 그림 이론 전산학에서, 튜링 기계()는 긴 테이프에 쓰여있는 여러 가지 기호들을 일정한 규칙에 따라 바꾸는 기계이.
집합
9개의 다각형의 집합을 나타낸 오일러 다이어그램 수학에서, 집합(集合)은 명확한 기준에 의하여 주어진 서로 다른 대상들이 모여 이루는 새로운 대상이.
보다 NP (복잡도)와 집합
NP-난해
NP-난해, NP-hard는 NP에 속하는 모든 판정 문제를 다항 시간에 다대일 환산할 수 있는 문제들의 집합이.
NP-완전
NP-완전(NP-complete, NP-C, NPC)은 NP 집합에 속하는 결정 문제 중에서 가장 어려운 문제의 부분집합으로, 모든 NP 문제를 다항 시간 내에 NP-완전 문제로 환산할 수 있. NP-완전 문제 중 하나라도 P에 속한다는 것을 증명한다면 모든 NP 문제가 P에 속하기 때문에, P-NP 문제가 P.
P (복잡도)
P(PTIME 또는 DTIME(nO(1)))는 결정론적 튜링 기계로 다항 시간 안에 풀 수 있는 판정 문제를 모아 놓은 복잡도 종류이.
P-NP 문제
P는 NP에 속하지만, NP가 P에 속하는지 여부는 밝혀지지 않았다. P-NP 문제는 복잡도 종류 P와 NP가 같은지에 대한 컴퓨터 과학의 미해결 문제로 컴퓨터로 풀이법이 빠르게 확인된 문제가 컴퓨터로 빠르게 풀리기도 할 것인가 아닌가를 묻고 있.