베유 대수와 슈발레-에일렌베르크 대수의 유사점
베유 대수와 슈발레-에일렌베르크 대수는 공통적으로 6 가지를 가지고 있습니다 (유니온백과에서): 리 대수, 리 대수 코호몰로지, 리 군, 미분 등급 대수, 코호몰로지, 외대수.
리 대수
리 대수(Lie代數)는 리 군의 국소적 구조를 나타내는 대수 구조이.
리 대수와 베유 대수 · 리 대수와 슈발레-에일렌베르크 대수 ·
리 대수 코호몰로지
리 군론에서, 리 대수 코호몰로지(Lie代數cohomology)는 리 대수 위에 정의되는 코호몰로지 이론이.
리 대수 코호몰로지와 베유 대수 · 리 대수 코호몰로지와 슈발레-에일렌베르크 대수 ·
리 군
리 군(Lie群)은 매끄러운 다양체인 위상군이.
리 군와 베유 대수 · 리 군와 슈발레-에일렌베르크 대수 ·
미분 등급 대수
호몰로지 대수학에서, 미분 등급 대수(微分等級代數,, 약자 DGA)는 곱규칙을 만족시키는 공경계 연산이 주어진 공사슬 복합체이.
미분 등급 대수와 베유 대수 · 미분 등급 대수와 슈발레-에일렌베르크 대수 ·
코호몰로지
수적 위상수학과 호몰로지 대수학에서, 코호몰로지()는 공사슬 복합체의 원소들의 몫군이.
베유 대수와 코호몰로지 · 슈발레-에일렌베르크 대수와 코호몰로지 ·
외대수
방향을 갖춘 선분 · 평행사변형 · 평행육면체로 해석할 수 있다. 외대수 원소의 노름은 평행육면체의 부피와 같다. 추상대수학과 미분기하학에서, 외대수(外代數) 또는 그라스만 대수(Graßmann代數) 는 어떤 주어진 벡터 공간에 대하여, 그 벡터들의 완전 반대칭 조합들로 구성된 벡터 공간 및 그 위에 정의된 이항 연산으로 구성되는 단위 결합 대수이자 호프 대수이.
위의 목록은 다음 질문에 대한 대답입니다
- 베유 대수와 슈발레-에일렌베르크 대수에는 공통점이 있습니다
- 베유 대수와 슈발레-에일렌베르크 대수의 유사점은 무엇입니까
베유 대수와 슈발레-에일렌베르크 대수의 비교.
베유 대수에는 12 개의 관계가 있고 슈발레-에일렌베르크 대수에는 29 개의 관계가 있습니다. 그들은 공통점 6을 가지고 있기 때문에, Jaccard 지수는 14.63%입니다 = 6 / (12 + 29).
참고 문헌
이 기사에서는 베유 대수와 슈발레-에일렌베르크 대수의 관계를 보여줍니다. 정보가 추출 된 각 기사에 액세스하려면 다음 사이트를 방문하십시오: