Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

아폴로니오스의 문제와 쥘리아 집합

바로 가기: 차이점, 유사점, Jaccard 유사성 계수, 참고 문헌.

아폴로니오스의 문제와 쥘리아 집합의 차이

아폴로니오스의 문제 vs. 쥘리아 집합

림 1: 아폴로니오스의 문제에 대한 해답 (분홍색). 주어진 원은 검은색이다. 그림 2: 아폴로니오스의 문제에 대한 해답 8가지. 주어진 원은 검은색이다. 아폴로니오스의 문제란 유클리드 기하학에서 평면에 주어진 3개의 원에 접하는 원을 그리는 것이.(그림 1). 리아 집합. 쥘리아 집합()은 가스통 쥘리아가 고안한 프랙털의 일종이.

아폴로니오스의 문제와 쥘리아 집합의 유사점

아폴로니오스의 문제와 쥘리아 집합는 공통점이 1 개 있습니다 (유니온백과에서): 프랙털.

프랙털

CollatzFractal Julia island2 프랙탈()은 일부 작은 조각이 전체와 비슷한 기하학적 형태를 말. 이런 특징을 자기 유사성이라고 하며, 다시 말해 자기 유사성을 갖는 기하학적 구조를 프랙털 구조.

아폴로니오스의 문제와 프랙털 · 쥘리아 집합와 프랙털 · 더보기 »

위의 목록은 다음 질문에 대한 대답입니다

아폴로니오스의 문제와 쥘리아 집합의 비교.

아폴로니오스의 문제에는 15 개의 관계가 있고 쥘리아 집합에는 4 개의 관계가 있습니다. 그들은 공통점 1을 가지고 있기 때문에, Jaccard 지수는 5.26%입니다 = 1 / (15 + 4).

참고 문헌

이 기사에서는 아폴로니오스의 문제와 쥘리아 집합의 관계를 보여줍니다. 정보가 추출 된 각 기사에 액세스하려면 다음 사이트를 방문하십시오: