Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

그로텐디크 아벨 범주

색인 그로텐디크 아벨 범주

호몰로지 대수학에서, 그로텐디크 아벨 범주(Grothendieck Abel範疇)는 특별히 좋은 성질을 가져, 호몰로지 대수학을 전개하기 간편한 아벨 범주이.

목차

  1. 6 처지: 덮개 (대수학), 작은 범주, 유도 범주, 연접층, 알렉산더 그로텐디크, 아벨 범주.

덮개 (대수학)

호몰로지 대수학에서, 덮개()는 주어진 대상의, 특정 조건을 만족시키는 "가장 가까운" 근사이며, 이는 동형 사상 아래 유일.

보다 그로텐디크 아벨 범주와 덮개 (대수학)

작은 범주

범주론에서, 작은 범주(-範疇)는 그 대상의 모임과 사상의 모임이 충분히 “작은” 범주를 말. 그 정확한 의미는 사용하는 수학 기초론에 따라 달라지는데, 예를 들어 그로텐디크 전체를 사용할 경우 대상과 사상의 집합이 사용되는 그로텐디크 전체의 원소이어야.

보다 그로텐디크 아벨 범주와 작은 범주

유도 범주

호몰로지 대수학에서, 유도 범주(誘導範疇)는 사슬 복합체의 범주에서, 호몰로지들이 같은 사슬 복합체들을 서로 동형으로 간주하도록 변형한 범주이.

보다 그로텐디크 아벨 범주와 유도 범주

연접층

수기하학과 복소기하학에서, 연접 가군층(連接加群層)은 유한 계수 벡터 다발(국소 자유층)의 핵 · 여핵으로 구성할 수 있는 가군층이.

보다 그로텐디크 아벨 범주와 연접층

알렉산더 그로텐디크

알렉산더 그로텐디크(1928년 3월 28일 ~ 2014년 11월 13일)는 독일 태생의 수학자.

보다 그로텐디크 아벨 범주와 알렉산더 그로텐디크

아벨 범주

호몰로지 대수학에서, 아벨 범주(Abel範疇)는 아벨 군의 범주 또는 주어진 환에 대한 가군의 범주와 유사한 성질을 가진 범주이.

보다 그로텐디크 아벨 범주와 아벨 범주

또한 AB5 아벨 범주로 알려져 있다.