목차
미분기하학
hyperbolic parabloid))위의 삼각형과 발산하는 평행선 미분기하학(微分幾何學, differential geometry)은 기하학의 문제를 다루기 위해 미적분학, 선형대수학 그리고 다중선형대수학을 이용한 수학의 한 분야이.
곡률
곡률(曲率, curvature)은 기하학의 여러 분야에서 나타나는 개념으로 '굽은 정도'를 뜻. 분야와 상황에 따라 여러 가지 종류의 곡률을 정의할 수 있으며, 기하학적 대상이 다른 공간(대체로 유클리드 공간)에 묻힌 상태에서 그 대상의 굽은 정도를 측정하는 '외재적 곡률'과, 좌표계와 무관하게 대상 자체의 국소적인 정보로 정의되는 '내재적 곡률'로 나눌 수 있.
보다 곡선의 기본정리와 곡률
곡선
수학에서, 곡선(曲線)은 연속적인 점들의 집합으로, 어떤 공간 안에 존재하는 1차원적인 도형을 의미.
보다 곡선의 기본정리와 곡선
정리
정리(定理)는 수학에서 가정(assumption)으로부터 증명된 명제를 말. 좁은 의미로는, 그와 같은 명제들 중에서 중요한 것만을 일컫.
보다 곡선의 기본정리와 정리
존재
존재(存在) 는 이 세계의 다양한 현상을 파악하기 위해 일정한 조건을 채운 현상들을 두루 일컫.
보다 곡선의 기본정리와 존재
유클리드 공간
3차원 유클리드 공간 상의 각 점은 3개의 좌표 축에 결정된다. 수학에서 유클리드 공간()은 유클리드가 연구했던 평면과 공간을 일반화한 것이.
연속 함수
위상수학과 해석학에서, 연속 함수(連續函數)는 정의역의 점의 "작은 변화"에 대하여, 치역의 값 역시 작게 변화하는 함수이.
실수
실수을 수직선으로 나타낸 것 수학에서, 실수(實數)는 주로 실직선 위의 점 또는 십진법 전개로 표현되는 수 체계이.
보다 곡선의 기본정리와 실수
3차원
3차원 직교 좌표계. 3차원()은 차원이 3인 것을 가리.
참고하세요
미분기하학 정리
- 가우스-보네 정리
- 곡선의 기본정리
- 균일화 정리
- 다르부 정리
- 베르트랑-디케-퓌죄 정리
- 사드의 정리
- 아티야-싱어 지표 정리