목차
13 처지: 그래프, 그래프 이론, 그래프 이론 용어, 그래프 색칠, 평면 그래프, 이분 그래프, 정규 그래프, 정다각형, 정이면체군, 연결 그래프, 선 그래프, 완전 그래프, 완전 이분 그래프.
- 정규 그래프
그래프
6개의 꼭짓점과 7개의 변을 갖는 그래프 수학에서, 더 구체적으로 그래프 이론에서, 그래프()는 일부 객체들의 쌍들이 서로 연관된 객체의 집합을 이루는 구조이.
보다 순환 그래프와 그래프
그래프 이론
6개의 꼭짓점과 7개의 변을 갖는 그래프 그래프 이론(graph理論)은 수학에서 객체 간에 짝을 이루는 관계를 모델링하기 위해 사용되는 수학 구조인 그래프에 대한 연구이.
그래프 이론 용어
이론에서 사용하는 많은 용어들에 대해서 정리.
그래프 색칠
의 3개의 색으로의 색칠. 이 그래프는 2개의 색으로 색칠할 수 없으며, 따라서 이 그래프의 색칠수는 3이다. 그래프 이론에서, 그래프 색칠(graph色漆)은 그래프의 꼭지점들에, 같은 색이 인접하지 않도록 색을 부여하는 방법이.
평면 그래프
평면 그래프(planar graph)는 평면 상에 그래프를 그렸을 때, 두 변이 꼭짓점 이외에 만나지 않도록 그릴 수 있는 그래프를 의미.
이분 그래프
이분 그래프의 예 위 그래프의 그래프 색칠 2색변 이분 그래프의 예 그래프 이론에서, 이분 그래프(二分graph)란 모든 꼭짓점을 빨강과 파랑으로 색칠하되, 모든 변이 빨강과 파랑 꼭짓점을 포함하도록 색칠할 수 있는 그래프이.
정규 그래프
페테르센 그래프는 3-정규 그래프이다. 완전 이분 그래프 K_3,3는 3-정규 그래프이다. 정규 그래프(定規graph)는 모든 꼭짓점이 동일한 수의 이웃을 가지는 그래프이.
정다각형
정다각형(正多角形)은 모든 각의 크기가 같으며 모든 변의 길이도 같은 다각형이.
보다 순환 그래프와 정다각형
정이면체군
칭군은 정이면체군 \operatornameDih_6이다. \operatornameDih_8은 정팔각형의 대칭군이다. 군론에서, 정이면체군(正二面體群)은 정다각형의 대칭군인 유한군이.
연결 그래프
이론에서, 연결 그래프(連結graph)는 모든 두 꼭짓점 사이에 경로가 존재하는 그래프이.
선 그래프
이론에서, 선 그래프(線graph)는 어떤 그래프의 변들을 꼭짓점으로 삼고, 원래 그래프의 변의 인접 여부를 변으로 삼는 그래프이.
완전 그래프
이론에서 완전 그래프(完全graph)는 서로 다른 두 개의 꼭짓점이 반드시 하나의 변으로 연결된 그래프이.
완전 이분 그래프
이론에서 완전 이분 그래프(完全二分graph)란 꼭짓점의 집합이 서로 겹치지 않는 두 집합 X와 Y의 합집합이고 X의 모든 꼭짓점이 Y의 각각의 꼭짓점과 하나의 변으로 연결되어 있는 이분 그래프이.