Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

계량 부호수

색인 계량 부호수

량 부호수(計量符號數)는 미분기하학에서 쓰이는 용어로, 계량 텐서의 양수 및 음수 고윳값들의 개수(중복도를 고려함)를 말. 보다 일반적으로 비퇴화 대칭 쌍선형 형식(이차 형식으로 볼 수 있음)에 대해 정의될 수 있. 계량 부호수는 계량 텐서에 대응되는 실계수 대칭행렬을 대각화한 뒤, 대각항들의 계수들 중에 양수인 것들과 음수인 것들의 개수를 센 것이.

목차

  1. 11 처지: 리만 다양체, 미분기하학, 가역행렬, 고윳값, 부호 (수학), 대칭행렬, 스펙트럼 정리, 이차 형식, 음수, 쌍선형 형식, 양수 (수학).

리만 다양체

미분기하학에서, 리만 다양체(Riemann多樣體)는 각 점의 접공간 위에 양의 정부호 쌍선형 형식이 주어져, 두 점 사이의 거리를 측정할 수 있는 매끄러운 다양체이.

보다 계량 부호수와 리만 다양체

미분기하학

hyperbolic parabloid))위의 삼각형과 발산하는 평행선 미분기하학(微分幾何學, differential geometry)은 기하학의 문제를 다루기 위해 미적분학, 선형대수학 그리고 다중선형대수학을 이용한 수학의 한 분야이.

보다 계량 부호수와 미분기하학

가역행렬

선형대수학에서, 가역 행렬(可逆行列) 또는 정칙 행렬(正則行列) 또는 비특이 행렬(非特異行列)은 그와 곱한 결과가 단위 행렬인 행렬을 갖는 행렬이.

보다 계량 부호수와 가역행렬

고윳값

위 두 장의 그림은 원래 이미지가 옆으로 기울어진 모양으로 변하는 선형 변환을 보여주고 있다. 이 선형 변환에서 수평 축은 그대로 수평 축으로 남기 때문에 푸른색 화살표는 방향이 변하지 않지만 붉은색 화살표는 방향이 변하게 된다.

보다 계량 부호수와 고윳값

부호 (수학)

부호를 표시할 때에는 보통 더하기표와 빼기표를 사용한다. 부호(符號)는 양(陽)(+) 또는 음(陰)(-)의 성질을 가지는 수학의 개념이자 이를 나타내는 수학 기호이.

보다 계량 부호수와 부호 (수학)

대칭행렬

선형대수학에서, 대칭 행렬(對稱行列)은 전치 행렬이 스스로와 같은 행렬이.

보다 계량 부호수와 대칭행렬

스펙트럼 정리

선형대수학과 함수해석학에서, 스펙트럼 정리(spectrum定理)는 선형작용소들을 그 고윳값 및 고윳값의 일반화인 스펙트럼으로 나타내는 일련의 정리들이.

보다 계량 부호수와 스펙트럼 정리

이차 형식

수론과 선형대수학에서, 이차 형식(二次形式)은 다변수 2차 동차다항식이.

보다 계량 부호수와 이차 형식

음수

음수(陰數)는 -1, -2, -, -1.414 처럼 0보다 작은 실수를 말. 보통 음부호(-)를 붙여서 음수임을 표시.

보다 계량 부호수와 음수

쌍선형 형식

선형대수학에서, 쌍선형 형식(雙線型形式)은 두 개의 벡터 변수에 대하여 각각 독립적으로 선형인 스칼라 값의 함수이.

보다 계량 부호수와 쌍선형 형식

양수 (수학)

양수(陽數)는 +1, 2,, 1.414 처럼 0보다 큰 실수를 말. 양수 중 정수(양의 정수)는 수론에서 자연수라고 일컬으며, 양수 앞에 붙은 부호 (+)는 생략할 수 있.

보다 계량 부호수와 양수 (수학)