Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

대각화 가능 행렬

색인 대각화 가능 행렬

선형대수학에서, 대각화 가능 행렬(對角化可能行列)은 적절한 가역 행렬로의 켤레를 취하여 대각 행렬로 만들 수 있는 정사각 행렬이.

목차

  1. 19 처지: 동치, 르베그 측도, 가역행렬, 고윳값, 복소수, 대각행렬, 대수적으로 닫힌 체, 자연수, 정수, 체 (수학), 영집합, 행렬, 여집합, 선형대수학, 필요충분조건, 아핀 공간, 실수, 환 (수학), 환의 표수.

동치

수학과 논리학에서 동치(同値)란 두 문장이 논리적으로 같다는 것을 의미.

보다 대각화 가능 행렬와 동치

르베그 측도

측도론에서, 르베그 측도()는 유클리드 공간의 부분 집합에 길이, 넓이 또는 부피를 할당하는 방법이.

보다 대각화 가능 행렬와 르베그 측도

가역행렬

선형대수학에서, 가역 행렬(可逆行列) 또는 정칙 행렬(正則行列) 또는 비특이 행렬(非特異行列)은 그와 곱한 결과가 단위 행렬인 행렬을 갖는 행렬이.

보다 대각화 가능 행렬와 가역행렬

고윳값

위 두 장의 그림은 원래 이미지가 옆으로 기울어진 모양으로 변하는 선형 변환을 보여주고 있다. 이 선형 변환에서 수평 축은 그대로 수평 축으로 남기 때문에 푸른색 화살표는 방향이 변하지 않지만 붉은색 화살표는 방향이 변하게 된다.

보다 대각화 가능 행렬와 고윳값

복소수

수학에서, 복소수(複素數)는 a+bi (a,b는 실수) 꼴의 수이.

보다 대각화 가능 행렬와 복소수

대각행렬

선형대수학에서, 대각행렬(對角行列, diagonal matrix)은 주대각선을 제외한 곳의 원소가 모두 0인 정사각행렬이.

보다 대각화 가능 행렬와 대각행렬

대수적으로 닫힌 체

상대수학에서, 대수적으로 닫힌 체(代數的으로 닫힌 體)는 모든 다항식을 1차 다항식으로 인수 분해할 수 있는 체이.

보다 대각화 가능 행렬와 대수적으로 닫힌 체

자연수

수학에서, 자연수(自然數)는 수를 셀 때나 순서를 매길 때 사용되는 수이.

보다 대각화 가능 행렬와 자연수

정수

정수들의 집합은 순서에 따라 직선 위에 나타낼 수 있다. 수학에서, 정수(整數)는 양의 정수(1, 2, 3,...) 및 음의 정수(-1, -2, -3,...) 및 0으로 이루어진 수 체계이.

보다 대각화 가능 행렬와 정수

체 (수학)

상대수학에서, 체(體)는 사칙연산이 자유로이 시행될 수 있고, 산술의 잘 알려진 규칙들을 만족하는 대수 구조이.

보다 대각화 가능 행렬와 체 (수학)

영집합

측도론에서, 영집합(零集合)은 매우 작아 무시할 수 있는 측도 공간의 부분집합이.

보다 대각화 가능 행렬와 영집합

행렬

'''A'''의 2행 1열에 위치한 원소를 가리킨다. 수학에서, 행렬(行列, matrix)은 수나 기호, 수식 등을 네모꼴로 배열한 것으로, 괄호로 묶어 표시.

보다 대각화 가능 행렬와 행렬

여집합

집합론에서, 집합 A의 여집합(餘集合, 또는 보집합(補集合), complement set) AC는, 전체집합 U의 원소 중 A의 원소가 아닌 것들의 집합이.

보다 대각화 가능 행렬와 여집합

선형대수학

3차원 유클리드 공간 R³은 벡터 공간이고, 원점을 지나가는 직선과 평면들은 R³의 부분공간이다. 선형대수학(線型代數學)은 벡터 공간, 벡터, 선형 변환, 행렬, 연립 선형 방정식 등을 연구하는 대수학의 한 분야이.

보다 대각화 가능 행렬와 선형대수학

필요충분조건

요조건(必要條件), 충분조건(充分條件), 필요충분조건(必要充分條件)은 논리학에서 논증 진술들간의 함축관계를 일컫는 말이.

보다 대각화 가능 행렬와 필요충분조건

아핀 공간

학에서 아핀 공간(affine空間)은 유클리드 공간의 아핀 기하학적 성질들을 일반화해서 만들어지는 구조이.

보다 대각화 가능 행렬와 아핀 공간

실수

실수을 수직선으로 나타낸 것 수학에서, 실수(實數)는 주로 실직선 위의 점 또는 십진법 전개로 표현되는 수 체계이.

보다 대각화 가능 행렬와 실수

환 (수학)

상대수학에서, 환(環)은 덧셈과 곱셈이 정의된 대수 구조의 하나이.

보다 대각화 가능 행렬와 환 (수학)

환의 표수

환론에서, (1을 갖춘) 환의 표수(標數, characteristic)는 그 환이 부분환으로 포함하는 순환환 \mathbb Z/n\mathbb Z의 크기 n이.

보다 대각화 가능 행렬와 환의 표수

또한 대각화행렬, 행렬의 대각화로 알려져 있다.