Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

반사슬

색인 반사슬

순서론에서, 반사슬(反사슬)은 서로 다른 두 원소가 비교될 수 없는, 원순서 집합의 부분 집합이며, 사슬()은 서로 두 원소가 항상 비교될 수 있는, 원순서 집합의 부분 집합이.

목차

  1. 40 처지: 동치, 리하르트 데데킨트, 멱집합, 미국, 가군, 가군의 길이, 가환환, 격자 (순서론), 공집합, 불 대수, 부분 순서 집합, 부분집합, 극대 원소와 극소 원소, 기수 (수학), 대수 구조, 뇌터 환, 논리합, 슈페르너의 정리, 크룰 차원, 이분 그래프, 전순서 집합, 집합, 집합의 분할, 집합의 크기, 추상대수학, 유한 집합, 상 (수학), 상한과 하한, 순서론, 수학적 귀납법, 최대 원소와 최소 원소, 사슬 조건, 서로소 집합, 소 아이디얼, 함수, 합집합, 한원소 집합, 아르틴 환, 원순서 집합, 환론.

  2. 순서론

동치

수학과 논리학에서 동치(同値)란 두 문장이 논리적으로 같다는 것을 의미.

보다 반사슬와 동치

리하르트 데데킨트

율리우스 빌헬름 리하르트 데데킨트(1831년 10월 6일~1916년 2월 12일)는 독일 태생의 수학자이.

보다 반사슬와 리하르트 데데킨트

멱집합

하세 도표로 표현한 \x, y, z\의 멱집합 원소들 집합론에서, 어떤 집합의 멱집합(冪集合)은 그 집합의 모든 부분 집합을 모은 집합이.

보다 반사슬와 멱집합

미국

미합중국(美合衆國,, U.S.A.), 약칭 합중국(U.S.) 또는 미국(美國)은 주 50개와 특별구 1개로 이루어진 연방제 공화국이.

보다 반사슬와 미국

가군

환론에서, 가군(加群)은 어떤 환의 작용이 주어진 아벨 군이.

보다 반사슬와 가군

가군의 길이

환론에서, 가군의 길이()는 가군의 크기를 나타내는 측도이며, 벡터 공간의 차원의 일반화이.

보다 반사슬와 가군의 길이

가환환

환대수학에서, 가환환(可換環)이란 곱셈이 교환 법칙을 만족시키는 환이.

보다 반사슬와 가환환

격자 (순서론)

순서론에서, 격자(格子)는 두 원소 부분집합의 상한(이음)과 하한(만남)이 항상 존재하는 부분 순서 집합이.

보다 반사슬와 격자 (순서론)

공집합

공집합의 기호 수학에서, 공집합(空集合)은 원소가 하나도 없는 집합이.

보다 반사슬와 공집합

불 대수

순서론과 추상대수학, 논리학에서, 불 대수(Boole代數)는 고전 명제 논리의 명제의 격자와 같은 성질을 갖는 격자이.

보다 반사슬와 불 대수

부분 순서 집합

''y'', ''z'') 순서가 정해지지 않은 것이다. 순서론에서, 부분 순서(部分順序) 또는 반순서(半順序)는 순서·나열 등의 개념을 추상화한 이항 관계이.

보다 반사슬와 부분 순서 집합

부분집합

부분집합 관계를 표현한 벤 다이어그램. ''A''는 ''B''의 부분집합이다. 집합론에서 집합 B의 부분집합(部分集合) A는, 모든 원소가 B에도 속하는 집합이.

보다 반사슬와 부분집합

극대 원소와 극소 원소

수학, 특히 순서론에서, 극대 원소(極大元素)와 극소 원소(極小元素)는 부분 순서 집합에서 그와 비교 가능한 원소들 가운데 가장 크거나 가장 작은 원소이.

보다 반사슬와 극대 원소와 극소 원소

기수 (수학)

ℵ0은 가장 작은 무한 기수이다. 수학에서, 기수(基數)는 집합의 크기를 나타내는 수이.

보다 반사슬와 기수 (수학)

대수 구조

상대수학에서, 대수 구조(代數構造)는 일련의 연산들이 주어진 집합이.

보다 반사슬와 대수 구조

뇌터 환

환론에서 뇌터 환(Noether環)은 아이디얼들이 오름 사슬 조건을 만족하는 환이.

보다 반사슬와 뇌터 환

논리합

리합(logical sum, 論理合, OR)이란 수리 논리학에서 주어진 복수 명제에 적어도 1개 이상의 참이 있는지를 나타내는 논리 연산이.

보다 반사슬와 논리합

슈페르너의 정리

슈페르너의 정리(Sperner's theorem, -定理)는 조합적 집합론의 기초적인 정리로, 독일 수학자 에마누엘 슈페르너()가 제시하였.

보다 반사슬와 슈페르너의 정리

크룰 차원

환대수학과 대수기하학에서, 크룰 차원(Krull次元)은 가환환에 대한 차원의 일종이.

보다 반사슬와 크룰 차원

이분 그래프

이분 그래프의 예 위 그래프의 그래프 색칠 2색변 이분 그래프의 예 그래프 이론에서, 이분 그래프(二分graph)란 모든 꼭짓점을 빨강과 파랑으로 색칠하되, 모든 변이 빨강과 파랑 꼭짓점을 포함하도록 색칠할 수 있는 그래프이.

보다 반사슬와 이분 그래프

전순서 집합

순서론에서, 전순서 집합(全順序集合)는 임의의 두 원소를 비교할 수 있는 부분 순서 집합이.

보다 반사슬와 전순서 집합

집합

9개의 다각형의 집합을 나타낸 오일러 다이어그램 수학에서, 집합(集合)은 명확한 기준에 의하여 주어진 서로 다른 대상들이 모여 이루는 새로운 대상이.

보다 반사슬와 집합

집합의 분할

묶인 우표들. 동시에 두 묶음에 속하는 우표는 없으며, 빈 묶음도 없다. 52개의 분할 《겐지 이야기》의 각 장을 나타내는 54개의 기호는 5개의 원소를 분할하는 52가지 방법에 기초하였다. 수학에서, 집합의 분할(集合-分割, partition of a set)은 집합의 원소들을 비공(non-empty, 非空) 부분집합들에게 나눠주어, 모든 원소가 각자 정확히 하나의 부분집합에 속하게끔 하는 것이.

보다 반사슬와 집합의 분할

집합의 크기

집합론에서, 집합의 크기() 또는 농도(濃度)는 집합의 "원소 개수"에 대한 척도이.

보다 반사슬와 집합의 크기

추상대수학

상대수학(抽象代數學)은 대수 구조를 다루는 여러 수학적 대상을 연구하는 분야이.

보다 반사슬와 추상대수학

유한 집합

수학에서, 유한 집합(有限集合)이란 집합의 원소의 개수가 한정되어 원소의 개수가 무한개가 아닌 집합을 의미.

보다 반사슬와 유한 집합

상 (수학)

수학에서, 상(像)은 어떤 함수에 대한 정의역의 원소(들)에 대응하는 공역의 원소(들)이.

보다 반사슬와 상 (수학)

상한과 하한

집합 A의 모든 원소가 파란색으로 표시되어 있다. 임의의 빨간색 원소는 모든 파란색 원소보다 크거나 같고, 그 중에서 가장 작은 빨간색 값(다이아몬드)이 최소 상계가 된다. 순서론에서, 어떤 집합 T의 부분 집합 S에 대해 S의 상한(上限) 또는 최소 상계(最小上界,, LUB)는 T의 원소 중 S의 모든 원소보다 큰 최소의 원소 (최소 상계)를 말.

보다 반사슬와 상한과 하한

순서론

right 순서론(順序論)은 이항 관계들 중에서 '순서'의 개념을 확장한 것으로 볼 수 있는 것들을 다루는 수학의 분야이.

보다 반사슬와 순서론

수학적 귀납법

수학적 귀납법(數學的歸納法)은 모든 자연수가 어떤 주어진 성질을 만족시킨다는 명제를 증명하는 방법의 하나이.

보다 반사슬와 수학적 귀납법

최대 원소와 최소 원소

순서론에서, 부분 순서 집합의 최대 원소(最大元素)는 모든 다른 원소들보다 큰 원소이.

보다 반사슬와 최대 원소와 최소 원소

사슬 조건

순서론에서, 오름 사슬 조건(-條件,, 약자 ACC)과 내림 사슬 조건(-條件,, 약자 DCC)은 부분 순서 집합이 만족시킬 수 있는 두 개의 유한성 조건이.

보다 반사슬와 사슬 조건

서로소 집합

서로소인 두 집합 집합론에서, 서로소 집합(-素集合)는 공통 원소가 없는 두 집합이.

보다 반사슬와 서로소 집합

소 아이디얼

환론에서, 소 아이디얼(素ideal)은 아이디얼 가운데 소수와 같은 성질을 갖는 것들이.

보다 반사슬와 소 아이디얼

함수

수를 상자에 비유한 그림. 수학에서, 함수(函數) 또는 사상(寫像)은 첫 번째 집합의 임의의 한 원소를 두 번째 집합의 오직 한 원소에 대응시키는 대응 관계이.

보다 반사슬와 함수

합집합

''A'' ∪ ''B''는 두 원을 합쳐 만든 큰 모양이다. 집합론에서 둘 또는 더 많은 집합의 합집합(合集合)은 그들의 모든 원소를 한 군데 합쳐놓은 집합이.

보다 반사슬와 합집합

한원소 집합

집합론에서, 한원소 집합(한元素集合)은 하나의 원소만을 갖는 집합이.

보다 반사슬와 한원소 집합

아르틴 환

환론에서, 아르틴 환(Artin環)은 아이디얼들이 내림 사슬 조건을 만족하는 환이.

보다 반사슬와 아르틴 환

원순서 집합

순서론에서, 원순서 집합(原順序集合)은 그 속의 두 원소를 추이적으로 비교할 수 있는 집합이.

보다 반사슬와 원순서 집합

환론

수학의 한 분야인 환론(環論)은 환(정수의 집합처럼 좋은 성질을 가진 덧셈과 곱셈 연산이 주어진 집합)을 주 대상으.

보다 반사슬와 환론

참고하세요

순서론

또한 딜워스의 정리, 사슬 (순서론)로 알려져 있다.