Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

완비 범주

색인 완비 범주

범주론에서, 완비 범주(完備範疇)는 집합 크기의 모든 극한들을 갖는 범주이.

목차

  1. 27 처지: 동등자, 동치, 가군, 가환환, 범주 (수학), 범주론, 곱 (범주론), 부분 순서 집합, 극한 (범주론), 대수 구조 다양체, 군 (수학), 당김 (범주론), 자명군, 작은 범주, 집합, 체 (수학), 쌍대곱, 유한 집합, 순서수, 함자 (수학), 함수, 아벨 범주, 아벨 군, 시작 대상과 끝 대상, 원순서 집합, 환 (수학), 완비 격자.

  2. 극한 (범주론)

동등자

수학에서, 동등자(同等子)는 여러 함수들이 같은 값을 갖게 되는, 정의역의 부분집합이.

보다 완비 범주와 동등자

동치

수학과 논리학에서 동치(同値)란 두 문장이 논리적으로 같다는 것을 의미.

보다 완비 범주와 동치

가군

환론에서, 가군(加群)은 어떤 환의 작용이 주어진 아벨 군이.

보다 완비 범주와 가군

가환환

환대수학에서, 가환환(可換環)이란 곱셈이 교환 법칙을 만족시키는 환이.

보다 완비 범주와 가환환

범주 (수학)

범주론에서, 범주(範疇)는 추상적인 구조와 이를 보존하는 변환의 개념을 형식화한 것이.

보다 완비 범주와 범주 (수학)

범주론

수학에서, 범주론(範疇論)는 수학적인 구조와 그 사이의 관계를 범주라는 추상적 개체로 다루는 이론이.

보다 완비 범주와 범주론

곱 (범주론)

범주론에서, 곱()은 곱집합이나 곱공간의 개념을 일반화한 개념이.

보다 완비 범주와 곱 (범주론)

부분 순서 집합

''y'', ''z'') 순서가 정해지지 않은 것이다. 순서론에서, 부분 순서(部分順序) 또는 반순서(半順序)는 순서·나열 등의 개념을 추상화한 이항 관계이.

보다 완비 범주와 부분 순서 집합

극한 (범주론)

수학의 한 분야인 범주론에서 극한(極限)은 수학의 여러 분야에서 사용되는 보편적 구조물들(예로서 곱이나 역극한 등)이 갖는 공통된 성질을 보존하며 일반화시킨 추상적인 개념이.

보다 완비 범주와 극한 (범주론)

대수 구조 다양체

보편 대수학에서, 대수 구조 다양체()는 어떤 항등식들을 만족시키는 대수 구조들의 모임이.

보다 완비 범주와 대수 구조 다양체

군 (수학)

루빅스 큐브를 돌리는 방법들을 모은 집합은 군을 이룬다. 정이면체군 \operatornameDih(6)의 군 다이어그램 추상대수학에서, 군(群)은 결합 법칙과 항등원과 각 원소의 역원을 가지는 이항 연산을 갖춘 대수 구조이.

보다 완비 범주와 군 (수학)

당김 (범주론)

범주론에서, 당김()은 어떤 한 쌍의 사상에 의해 결정되는, 곱의 일반화이.

보다 완비 범주와 당김 (범주론)

자명군

자명군(自明群, trivial group)은 원소가 하나뿐인 군이.

보다 완비 범주와 자명군

작은 범주

범주론에서, 작은 범주(-範疇)는 그 대상의 모임과 사상의 모임이 충분히 “작은” 범주를 말. 그 정확한 의미는 사용하는 수학 기초론에 따라 달라지는데, 예를 들어 그로텐디크 전체를 사용할 경우 대상과 사상의 집합이 사용되는 그로텐디크 전체의 원소이어야.

보다 완비 범주와 작은 범주

집합

9개의 다각형의 집합을 나타낸 오일러 다이어그램 수학에서, 집합(集合)은 명확한 기준에 의하여 주어진 서로 다른 대상들이 모여 이루는 새로운 대상이.

보다 완비 범주와 집합

체 (수학)

상대수학에서, 체(體)는 사칙연산이 자유로이 시행될 수 있고, 산술의 잘 알려진 규칙들을 만족하는 대수 구조이.

보다 완비 범주와 체 (수학)

쌍대곱

범주론에서, 쌍대곱(雙對-, coproduct)은 곱에 대한 쌍대(dual) 개념이.

보다 완비 범주와 쌍대곱

유한 집합

수학에서, 유한 집합(有限集合)이란 집합의 원소의 개수가 한정되어 원소의 개수가 무한개가 아닌 집합을 의미.

보다 완비 범주와 유한 집합

순서수

\omega^\omega 이하의 순서수들의 형상화 집합론에서, 순서수(順序數)는 정렬 전순서 집합들의 "길이"를 측정하는 수의 일종이.

보다 완비 범주와 순서수

함자 (수학)

범주론에서 함자(函子)는 두 범주 사이의 함수에 해당하는 구조로, 대상을 대상으로, 사상을 사상으로 대응시.

보다 완비 범주와 함자 (수학)

함수

수를 상자에 비유한 그림. 수학에서, 함수(函數) 또는 사상(寫像)은 첫 번째 집합의 임의의 한 원소를 두 번째 집합의 오직 한 원소에 대응시키는 대응 관계이.

보다 완비 범주와 함수

아벨 범주

호몰로지 대수학에서, 아벨 범주(Abel範疇)는 아벨 군의 범주 또는 주어진 환에 대한 가군의 범주와 유사한 성질을 가진 범주이.

보다 완비 범주와 아벨 범주

아벨 군

에서, 아벨 군(Abel群) 또는 가환군(可換群)은 교환 법칙이 성립하는 군이.

보다 완비 범주와 아벨 군

시작 대상과 끝 대상

범주론에서, 시작 대상(始作對象)과 끝 대상(-對象)은 매우 단순하여, 이 대상을 정의역 또는 공역으로 하는 사상이 하나밖에 없는 대상이.

보다 완비 범주와 시작 대상과 끝 대상

원순서 집합

순서론에서, 원순서 집합(原順序集合)은 그 속의 두 원소를 추이적으로 비교할 수 있는 집합이.

보다 완비 범주와 원순서 집합

환 (수학)

상대수학에서, 환(環)은 덧셈과 곱셈이 정의된 대수 구조의 하나이.

보다 완비 범주와 환 (수학)

완비 격자

순서론에서, 완비 격자(完備格子)는 임의의 크기의 이음 및 만남이 존재하는 격자이.

보다 완비 범주와 완비 격자

참고하세요

극한 (범주론)

또한 쌍대 완비 범주, 쌍대완비 범주, 유한 쌍대 완비 범주로 알려져 있다.