Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

일차독립

색인 일차독립

선형대수학에서, 선형독립(線型獨立, linear independence) 또는 일차독립(一次獨立)은 남은 벡터들의 선형결합인 벡터가 존재하지 않는다는, 벡터 집합에 대한 성질이.

목차

  1. 4 처지: 벡터 공간, 체 (수학), 선형결합, 선형대수학.

  2. 추상대수학

벡터 공간

선형대수학에서, 벡터 공간(vector空間)은 원소를 서로 더하거나, 주어진 배수로 늘이거나 줄일 수 있는 공간이.

보다 일차독립와 벡터 공간

체 (수학)

상대수학에서, 체(體)는 사칙연산이 자유로이 시행될 수 있고, 산술의 잘 알려진 규칙들을 만족하는 대수 구조이.

보다 일차독립와 체 (수학)

선형결합

선형대수학에서, 선형결합(線型結合, linear combination) 또는 일차결합(一次結合)은 벡터들을 스칼라배와 벡터 덧셈을 통해 조합하여 새로운 벡터를 얻는 연산이.

보다 일차독립와 선형결합

선형대수학

3차원 유클리드 공간 R³은 벡터 공간이고, 원점을 지나가는 직선과 평면들은 R³의 부분공간이다. 선형대수학(線型代數學)은 벡터 공간, 벡터, 선형 변환, 행렬, 연립 선형 방정식 등을 연구하는 대수학의 한 분야이.

보다 일차독립와 선형대수학

참고하세요

추상대수학

또한 일차 독립, 일차 독립 집합로 알려져 있다.