목차
미분기하학
hyperbolic parabloid))위의 삼각형과 발산하는 평행선 미분기하학(微分幾何學, differential geometry)은 기하학의 문제를 다루기 위해 미적분학, 선형대수학 그리고 다중선형대수학을 이용한 수학의 한 분야이.
벡터 다발
위상수학 및 미분기하학에서, 벡터 다발()은 올에 위상 벡터 공간의 구조가 주어진 올다발이.
복소다양체
미분기하학에서, 복소다양체(複素多樣體)는 국소적으로 복소 공간 \mathbb C^n으로 간주할 수 있는 위상 공간이.
정칙 함수
복소해석학에서, 정칙 함수(正則函數)는 복소 함수에 대한, 미분 가능 함수와 해석 함수에 동시에 대응하는 개념이.
층 (수학)
수학에서, 층(層)은 어떤 위상 공간에서, 각 점에 국소적 구조를 붙인 것이.
층 코호몰로지
수학에서, 층 코호몰로지(層 cohomology)는 아벨 군 값을 가진 층에 정의되는 호몰로지 이론이.
코호몰로지
수적 위상수학과 호몰로지 대수학에서, 코호몰로지()는 공사슬 복합체의 원소들의 몫군이.
사영 가군
환론에서, 사영 가군(射影加群)은 자유 가군을 직합으로 분해하였을 때의 한 성분으로 나타낼 수 있는 가군이.
아벨 군
에서, 아벨 군(Abel群) 또는 가환군(可換群)은 교환 법칙이 성립하는 군이.
환 달린 공간
수학에서, 환 달린 공간(環달린空間)은 간단히 말하면 각 열린집합마다 가환환이 달려 있어서, 그 환의 각 원소들을 열린집합 위의 일종의 함수로 볼 수 있는 공간이.
완전열
호몰로지 대수학에서, 완전열(完全列)은 한 사상의 상이 다음 사상의 핵과 일치하는, 사상들과 대상들로 구성된 열이.
참고하세요
벡터 다발
복소다양체
또한 해석적 벡터다발로 알려져 있다.