목차
43 처지: 로런츠 변환, 로런츠 군, 리 군, 리만 구, 마요라나 스피너, 뫼비우스 변환, 미분 형식, 민코프스키 공간, 반단순 리 대수, 벡터 공간, 계량 부호수, 부분군, 근계, 기본군, 대합 (수학), 군 (수학), 군의 작용, 군의 표현, 등거리변환, 딸림표현, 노름 공간, 단일 연결 공간, 단순 가군, 스피너, 자기 동형 사상, 이차 형식, 전사 함수, 정규 직교 기저, 중심 (대수학), 직교군, 직접곱, 쌍선형 형식, 유클리드 공간, 순환군, 호지 쌍대, 행렬식, 연결 그래프, 킬링 형식, 사원수, 선형 변환, 핵 (수학), 아벨 군, 2차원 등각 장론.
- 4차원 기하학
- 사원수
- 회전
로런츠 변환
변환(Lorentz transformation)은 네덜란드의 수학자겸 물리학자 헨드릭 안톤 로런츠가 발견한, 전자기학과 고전역학 간의 모순을 해결해 낸 특수상대성이론의 기본을 이루는 변환식이.
로런츠 군
(Lorentz群, Lorentz group)이란 민코프스키 공간 상의 로런츠 변환과 회전변환을 모아놓은 군을 말. 중력이 작용하지 않는 경우에는 로런츠 군에 속하는 변환에 대하여 많은 물리학적 법칙들의 형태가 변하지 않는 대칭성을 가지고 있.
리 군
리 군(Lie群)은 매끄러운 다양체인 위상군이.
보다 4차원 회전군와 리 군
리만 구
복소해석학에서, 리만 구(Riemann球)는 복소 구조를 가진 3차원 구이.
마요라나 스피너
이론물리학과 표현론에서, 마요라나 스피너()는 특정 차원과 부호수에서 존재하는, 스핀 군의 실수 표현이.
뫼비우스 변환
복소해석학에서, 뫼비우스 변환(Möbius transformation)은 다음과 같은 꼴의 함수이.
미분 형식
미분기하학에서, 미분 형식(微分形式)은 매끄러운 다양체의 여접다발의 외승의 단면이.
민코프스키 공간
민코프스키 공간(Minkowski space) 또는 민코프스키 시공간(Minkowski spacetime)이란 물리학과 수학에서 사용되는 아인슈타인의 특수상대성이론을 잘 기술하는 수학적 공간이.
반단순 리 대수
리 대수 이론에서, 반단순 리 대수(半單純Lie代數)는 단순 리 대수들의 직합인 리 대수이.
벡터 공간
선형대수학에서, 벡터 공간(vector空間)은 원소를 서로 더하거나, 주어진 배수로 늘이거나 줄일 수 있는 공간이.
계량 부호수
량 부호수(計量符號數)는 미분기하학에서 쓰이는 용어로, 계량 텐서의 양수 및 음수 고윳값들의 개수(중복도를 고려함)를 말. 보다 일반적으로 비퇴화 대칭 쌍선형 형식(이차 형식으로 볼 수 있음)에 대해 정의될 수 있. 계량 부호수는 계량 텐서에 대응되는 실계수 대칭행렬을 대각화한 뒤, 대각항들의 계수들 중에 양수인 것들과 음수인 것들의 개수를 센 것이.
부분군
부분군 (部分群, subgroup)은 어떤 군(群, group)의 부분 집합으로서, 그 스스로가 다시 원래의 군과 동일한 연산에 대해 군이 되는 대상을 뜻. 분류:군론.
보다 4차원 회전군와 부분군
근계
G2의 근계. \alpha와 \beta는 단순근이다. 리 군 이론에서, 근계(根系)는 일련의 기하학적 성질을 만족하는 유한차원 벡터의 집합이.
보다 4차원 회전군와 근계
기본군
수적 위상수학에서, 기본군(基本群)은 어떤 위상 공간 속의 폐곡선들의 호모토피 동치류들의 군이며, 1차 호모토피 군이.
보다 4차원 회전군와 기본군
대합 (수학)
합의 예. 수학에서, 대합(對合)은 정의역과 공역이 같고, 스스로의 역함수인 전단사 함수이.
군 (수학)
루빅스 큐브를 돌리는 방법들을 모은 집합은 군을 이룬다. 정이면체군 \operatornameDih(6)의 군 다이어그램 추상대수학에서, 군(群)은 결합 법칙과 항등원과 각 원소의 역원을 가지는 이항 연산을 갖춘 대수 구조이.
군의 작용
에서, 군의 작용(群의作用)은 어떤 군으로부터, 어떤 집합의 대칭군으로 가는 군 준동형이.
군의 표현
에서, 군의 표현(表現)은 군을 벡터 공간의 일반선형군의 부분군으로 나타내는 군 준동형이.
등거리변환
수학에서, 등거리 변환(等距離變換) 또는 등거리 사상(等距離寫像) 또는 등장 사상(等長寫像)은 거리를 보존하는 거리 공간 사이 함수.
딸림표현
리 군론에서, 딸림표현(-表現)은 어떤 리 군이 스스로의 리 대수 위에 가지는 표준적인 표현이.
노름 공간
선형대수학 및 함수해석학에서, 노름 공간(norm空間)은 원소들에 일종의 ‘길이’ 또는 ‘크기’가 부여된 벡터 공간이.
단일 연결 공간
위상수학에서, 단일 연결 공간(單一連結空間)은 공간 속의 임의의 닫힌 경로를 연속적으로 줄여 하나의 점으로 만들 수 있는 공간을 말.
단순 가군
환론에서, 단순 가군(單純加群)은 그 부분가군이 자신 또는 0밖에 없는 가군이.
스피너
현론과 양자역학에서, 스피너()란 넓은 의미에서 로런츠 대수의 표현 가운데 텐서가 아닌 것들이.
보다 4차원 회전군와 스피너
자기 동형 사상
수학에서, 자기 동형 사상(自己同型寫像)은 자기 사상인 동형 사상이.
이차 형식
수론과 선형대수학에서, 이차 형식(二次形式)은 다변수 2차 동차다항식이.
전사 함수
전사 함수의 예 수학에서, 전사 함수(全射函數) 또는 위로의 함수()는 공역과 치역이 같은 함수이.
정규 직교 기저
힐베르트 공간 이론에서, 정규 직교 기저(正規直交基底)는 주어진 힐베르트 공간의 원소를 ℓ2 수렴 계수의 가산 선형 결합으로 나타낼 수 있는 기저 벡터들의 집합이.
중심 (대수학)
상대수학에서, 중심(中心)은 어떤 대수 구조에서 모든 원소와 가환하는 원소들로 구성된 부분 집합이.
직교군
에서, 직교군(直交群)은 주어진 체에 대한 직교 행렬의 리 군이.
보다 4차원 회전군와 직교군
직접곱
수학에서, 직접곱(直接곱)은 여러 개의 대수 구조들의 곱집합 위에 표준적으로 정의되는 대수 구조이.
보다 4차원 회전군와 직접곱
쌍선형 형식
선형대수학에서, 쌍선형 형식(雙線型形式)은 두 개의 벡터 변수에 대하여 각각 독립적으로 선형인 스칼라 값의 함수이.
유클리드 공간
3차원 유클리드 공간 상의 각 점은 3개의 좌표 축에 결정된다. 수학에서 유클리드 공간()은 유클리드가 연구했던 평면과 공간을 일반화한 것이.
순환군
에서, 순환군(循環群)은 하나의 원소에 의하여 생성되는 군이.
보다 4차원 회전군와 순환군
호지 쌍대
미분기하학에서, 호지 쌍대(Hodge雙對, Hodge dual)는 미분 형식을 그 여차원의 미분 형식으로 변환시키는 연산이.
행렬식
선형대수학에서, 행렬식(行列式)은 정사각행렬에 수를 대응시키는 함수의 하나이.
보다 4차원 회전군와 행렬식
연결 그래프
이론에서, 연결 그래프(連結graph)는 모든 두 꼭짓점 사이에 경로가 존재하는 그래프이.
킬링 형식
리 군 이론에서, 킬링 형식(Killing形式)은 리 대수 위에 자연스럽게 존재하는 대칭 쌍선형 형식이.
사원수
브로엄 다리에 새겨진 기념비. 이 곳에서 해밀턴이 사원수를 발견하였다고 한다. 수학에서, 사원수(四元數) 또는 해밀턴 수()는 복소수를 확장해 만든 수 체계이.
보다 4차원 회전군와 사원수
선형 변환
선형대수학에서, 선형 변환(線型變換) 또는 선형 사상(線型寫像) 또는 선형 연산자(線型演算子) 또는 선형 작용소(線型作用素)는 선형 결합을 보존하는, 두 벡터 공간 사이의 함수이.
핵 (수학)
수학에서, 어떤 사상의 핵(核, 커널)은 0의 원상의 포함 사상으로 생각할 수 있는 특별한 단사 사상이.
아벨 군
에서, 아벨 군(Abel群) 또는 가환군(可換群)은 교환 법칙이 성립하는 군이.
2차원 등각 장론
수학과 물리학에서, 2차원 등각 장론(二次元等角場論)은 등각 장론의 2차원에서의 특수한 경우이.
참고하세요
4차원 기하학
사원수
회전
- 4차원 회전군
- 각가속도
- 각운동량
- 관성 모멘트
- 구심력
- 굴림 운동
- 돌림힘
- 분당 회전수
- 소용돌이
- 야르콥스키 효과
- 요요
- 원심력
- 원운동
- 인공중력
- 자전
- 자전 주기
- 저기압성 순환
- 지구의 자전
- 차등회전
- 커 블랙홀
- 코리올리 효과
- 항성 자전
- 회전
- 회전문
- 회전수
또한 SL(2,C), SO(4), Spin(4)로 알려져 있다.