Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

4차원 회전군

색인 4차원 회전군

리 군론에서, 4차원 회전군(四次元回轉群)은 4차원 유클리드 공간의, 원점을 보존하는 등거리 변환의 군 O(4) 또는 이와 관련된 군들을 말.

목차

  1. 43 처지: 로런츠 변환, 로런츠 군, 리 군, 리만 구, 마요라나 스피너, 뫼비우스 변환, 미분 형식, 민코프스키 공간, 반단순 리 대수, 벡터 공간, 계량 부호수, 부분군, 근계, 기본군, 대합 (수학), 군 (수학), 군의 작용, 군의 표현, 등거리변환, 딸림표현, 노름 공간, 단일 연결 공간, 단순 가군, 스피너, 자기 동형 사상, 이차 형식, 전사 함수, 정규 직교 기저, 중심 (대수학), 직교군, 직접곱, 쌍선형 형식, 유클리드 공간, 순환군, 호지 쌍대, 행렬식, 연결 그래프, 킬링 형식, 사원수, 선형 변환, 핵 (수학), 아벨 군, 2차원 등각 장론.

  2. 4차원 기하학
  3. 사원수
  4. 회전

로런츠 변환

변환(Lorentz transformation)은 네덜란드의 수학자겸 물리학자 헨드릭 안톤 로런츠가 발견한, 전자기학과 고전역학 간의 모순을 해결해 낸 특수상대성이론의 기본을 이루는 변환식이.

보다 4차원 회전군와 로런츠 변환

로런츠 군

(Lorentz群, Lorentz group)이란 민코프스키 공간 상의 로런츠 변환과 회전변환을 모아놓은 군을 말. 중력이 작용하지 않는 경우에는 로런츠 군에 속하는 변환에 대하여 많은 물리학적 법칙들의 형태가 변하지 않는 대칭성을 가지고 있.

보다 4차원 회전군와 로런츠 군

리 군

리 군(Lie群)은 매끄러운 다양체인 위상군이.

보다 4차원 회전군와 리 군

리만 구

복소해석학에서, 리만 구(Riemann球)는 복소 구조를 가진 3차원 구이.

보다 4차원 회전군와 리만 구

마요라나 스피너

이론물리학과 표현론에서, 마요라나 스피너()는 특정 차원과 부호수에서 존재하는, 스핀 군의 실수 표현이.

보다 4차원 회전군와 마요라나 스피너

뫼비우스 변환

복소해석학에서, 뫼비우스 변환(Möbius transformation)은 다음과 같은 꼴의 함수이.

보다 4차원 회전군와 뫼비우스 변환

미분 형식

미분기하학에서, 미분 형식(微分形式)은 매끄러운 다양체의 여접다발의 외승의 단면이.

보다 4차원 회전군와 미분 형식

민코프스키 공간

민코프스키 공간(Minkowski space) 또는 민코프스키 시공간(Minkowski spacetime)이란 물리학과 수학에서 사용되는 아인슈타인의 특수상대성이론을 잘 기술하는 수학적 공간이.

보다 4차원 회전군와 민코프스키 공간

반단순 리 대수

리 대수 이론에서, 반단순 리 대수(半單純Lie代數)는 단순 리 대수들의 직합인 리 대수이.

보다 4차원 회전군와 반단순 리 대수

벡터 공간

선형대수학에서, 벡터 공간(vector空間)은 원소를 서로 더하거나, 주어진 배수로 늘이거나 줄일 수 있는 공간이.

보다 4차원 회전군와 벡터 공간

계량 부호수

량 부호수(計量符號數)는 미분기하학에서 쓰이는 용어로, 계량 텐서의 양수 및 음수 고윳값들의 개수(중복도를 고려함)를 말. 보다 일반적으로 비퇴화 대칭 쌍선형 형식(이차 형식으로 볼 수 있음)에 대해 정의될 수 있. 계량 부호수는 계량 텐서에 대응되는 실계수 대칭행렬을 대각화한 뒤, 대각항들의 계수들 중에 양수인 것들과 음수인 것들의 개수를 센 것이.

보다 4차원 회전군와 계량 부호수

부분군

부분군 (部分群, subgroup)은 어떤 군(群, group)의 부분 집합으로서, 그 스스로가 다시 원래의 군과 동일한 연산에 대해 군이 되는 대상을 뜻. 분류:군론.

보다 4차원 회전군와 부분군

근계

G2의 근계. \alpha와 \beta는 단순근이다. 리 군 이론에서, 근계(根系)는 일련의 기하학적 성질을 만족하는 유한차원 벡터의 집합이.

보다 4차원 회전군와 근계

기본군

수적 위상수학에서, 기본군(基本群)은 어떤 위상 공간 속의 폐곡선들의 호모토피 동치류들의 군이며, 1차 호모토피 군이.

보다 4차원 회전군와 기본군

대합 (수학)

합의 예. 수학에서, 대합(對合)은 정의역과 공역이 같고, 스스로의 역함수인 전단사 함수이.

보다 4차원 회전군와 대합 (수학)

군 (수학)

루빅스 큐브를 돌리는 방법들을 모은 집합은 군을 이룬다. 정이면체군 \operatornameDih(6)의 군 다이어그램 추상대수학에서, 군(群)은 결합 법칙과 항등원과 각 원소의 역원을 가지는 이항 연산을 갖춘 대수 구조이.

보다 4차원 회전군와 군 (수학)

군의 작용

에서, 군의 작용(群의作用)은 어떤 군으로부터, 어떤 집합의 대칭군으로 가는 군 준동형이.

보다 4차원 회전군와 군의 작용

군의 표현

에서, 군의 표현(表現)은 군을 벡터 공간의 일반선형군의 부분군으로 나타내는 군 준동형이.

보다 4차원 회전군와 군의 표현

등거리변환

수학에서, 등거리 변환(等距離變換) 또는 등거리 사상(等距離寫像) 또는 등장 사상(等長寫像)은 거리를 보존하는 거리 공간 사이 함수.

보다 4차원 회전군와 등거리변환

딸림표현

리 군론에서, 딸림표현(-表現)은 어떤 리 군이 스스로의 리 대수 위에 가지는 표준적인 표현이.

보다 4차원 회전군와 딸림표현

노름 공간

선형대수학 및 함수해석학에서, 노름 공간(norm空間)은 원소들에 일종의 ‘길이’ 또는 ‘크기’가 부여된 벡터 공간이.

보다 4차원 회전군와 노름 공간

단일 연결 공간

위상수학에서, 단일 연결 공간(單一連結空間)은 공간 속의 임의의 닫힌 경로를 연속적으로 줄여 하나의 점으로 만들 수 있는 공간을 말.

보다 4차원 회전군와 단일 연결 공간

단순 가군

환론에서, 단순 가군(單純加群)은 그 부분가군이 자신 또는 0밖에 없는 가군이.

보다 4차원 회전군와 단순 가군

스피너

현론과 양자역학에서, 스피너()란 넓은 의미에서 로런츠 대수의 표현 가운데 텐서가 아닌 것들이.

보다 4차원 회전군와 스피너

자기 동형 사상

수학에서, 자기 동형 사상(自己同型寫像)은 자기 사상인 동형 사상이.

보다 4차원 회전군와 자기 동형 사상

이차 형식

수론과 선형대수학에서, 이차 형식(二次形式)은 다변수 2차 동차다항식이.

보다 4차원 회전군와 이차 형식

전사 함수

전사 함수의 예 수학에서, 전사 함수(全射函數) 또는 위로의 함수()는 공역과 치역이 같은 함수이.

보다 4차원 회전군와 전사 함수

정규 직교 기저

힐베르트 공간 이론에서, 정규 직교 기저(正規直交基底)는 주어진 힐베르트 공간의 원소를 ℓ2 수렴 계수의 가산 선형 결합으로 나타낼 수 있는 기저 벡터들의 집합이.

보다 4차원 회전군와 정규 직교 기저

중심 (대수학)

상대수학에서, 중심(中心)은 어떤 대수 구조에서 모든 원소와 가환하는 원소들로 구성된 부분 집합이.

보다 4차원 회전군와 중심 (대수학)

직교군

에서, 직교군(直交群)은 주어진 체에 대한 직교 행렬의 리 군이.

보다 4차원 회전군와 직교군

직접곱

수학에서, 직접곱(直接곱)은 여러 개의 대수 구조들의 곱집합 위에 표준적으로 정의되는 대수 구조이.

보다 4차원 회전군와 직접곱

쌍선형 형식

선형대수학에서, 쌍선형 형식(雙線型形式)은 두 개의 벡터 변수에 대하여 각각 독립적으로 선형인 스칼라 값의 함수이.

보다 4차원 회전군와 쌍선형 형식

유클리드 공간

3차원 유클리드 공간 상의 각 점은 3개의 좌표 축에 결정된다. 수학에서 유클리드 공간()은 유클리드가 연구했던 평면과 공간을 일반화한 것이.

보다 4차원 회전군와 유클리드 공간

순환군

에서, 순환군(循環群)은 하나의 원소에 의하여 생성되는 군이.

보다 4차원 회전군와 순환군

호지 쌍대

미분기하학에서, 호지 쌍대(Hodge雙對, Hodge dual)는 미분 형식을 그 여차원의 미분 형식으로 변환시키는 연산이.

보다 4차원 회전군와 호지 쌍대

행렬식

선형대수학에서, 행렬식(行列式)은 정사각행렬에 수를 대응시키는 함수의 하나이.

보다 4차원 회전군와 행렬식

연결 그래프

이론에서, 연결 그래프(連結graph)는 모든 두 꼭짓점 사이에 경로가 존재하는 그래프이.

보다 4차원 회전군와 연결 그래프

킬링 형식

리 군 이론에서, 킬링 형식(Killing形式)은 리 대수 위에 자연스럽게 존재하는 대칭 쌍선형 형식이.

보다 4차원 회전군와 킬링 형식

사원수

브로엄 다리에 새겨진 기념비. 이 곳에서 해밀턴이 사원수를 발견하였다고 한다. 수학에서, 사원수(四元數) 또는 해밀턴 수()는 복소수를 확장해 만든 수 체계이.

보다 4차원 회전군와 사원수

선형 변환

선형대수학에서, 선형 변환(線型變換) 또는 선형 사상(線型寫像) 또는 선형 연산자(線型演算子) 또는 선형 작용소(線型作用素)는 선형 결합을 보존하는, 두 벡터 공간 사이의 함수이.

보다 4차원 회전군와 선형 변환

핵 (수학)

수학에서, 어떤 사상의 핵(核, 커널)은 0의 원상의 포함 사상으로 생각할 수 있는 특별한 단사 사상이.

보다 4차원 회전군와 핵 (수학)

아벨 군

에서, 아벨 군(Abel群) 또는 가환군(可換群)은 교환 법칙이 성립하는 군이.

보다 4차원 회전군와 아벨 군

2차원 등각 장론

수학과 물리학에서, 2차원 등각 장론(二次元等角場論)은 등각 장론의 2차원에서의 특수한 경우이.

보다 4차원 회전군와 2차원 등각 장론

참고하세요

4차원 기하학

사원수

회전

또한 SL(2,C), SO(4), Spin(4)로 알려져 있다.