목차
범주 (수학)
범주론에서, 범주(範疇)는 추상적인 구조와 이를 보존하는 변환의 개념을 형식화한 것이.
범주론
수학에서, 범주론(範疇論)는 수학적인 구조와 그 사이의 관계를 범주라는 추상적 개체로 다루는 이론이.
보다 내적 범주와 범주론
곱 (범주론)
범주론에서, 곱()은 곱집합이나 곱공간의 개념을 일반화한 개념이.
교차 가군
수적 위상수학에서, 교차 가군(交叉加群)은 2-군의 데이터를 담고 있는 대수적 구조이.
보다 내적 범주와 교차 가군
군 (수학)
루빅스 큐브를 돌리는 방법들을 모은 집합은 군을 이룬다. 정이면체군 \operatornameDih(6)의 군 다이어그램 추상대수학에서, 군(群)은 결합 법칙과 항등원과 각 원소의 역원을 가지는 이항 연산을 갖춘 대수 구조이.
군 대상
범주론에서, 군 대상(群對象)은 곱을 갖는 범주에서 정의되는, 군의 역할을 하는 대상이.
보다 내적 범주와 군 대상
당김 (범주론)
범주론에서, 당김()은 어떤 한 쌍의 사상에 의해 결정되는, 곱의 일반화이.
작은 범주
범주론에서, 작은 범주(-範疇)는 그 대상의 모임과 사상의 모임이 충분히 “작은” 범주를 말. 그 정확한 의미는 사용하는 수학 기초론에 따라 달라지는데, 예를 들어 그로텐디크 전체를 사용할 경우 대상과 사상의 집합이 사용되는 그로텐디크 전체의 원소이어야.
보다 내적 범주와 작은 범주
준군
상대수학과 범주론에서, 준군(準群)은 군과 유사한 대수적 구조이나, 그 위의 이항연산이 모든 원소에 대해 정의되어야 한다는 조건이 없. 즉, 결합법칙을 만족하는 부분적으로 정의된 이항연산이 존재하고, 역원이 항상 존재하는 집합이.
보다 내적 범주와 준군
집합
9개의 다각형의 집합을 나타낸 오일러 다이어그램 수학에서, 집합(集合)은 명확한 기준에 의하여 주어진 서로 다른 대상들이 모여 이루는 새로운 대상이.
보다 내적 범주와 집합