Google Play 스토어에서 Unionpedia 앱을 복원하기 위해 작업 중입니다
나가는들어오는
🌟더 나은 탐색을 위해 디자인을 단순화했습니다!
Instagram Facebook X LinkedIn

분해계

색인 분해계

범주론에서, 분해계(分解系)는 어떤 범주의 모든 사상을 특별한 모임에 속하는 두 사상의 합성으로 (동형 사상 아래) 표준적으로 분해하는 구조이.

목차

  1. 42 처지: CW 복합체, 동치, 동형 사상, 매끄러운 사상, 멱영 아이디얼, 모임 (수학), 모형 범주, 값매김환, 범주 (수학), 범주론, 고유 사상, 공집합, 공역 (수학), 분리 사상, 분수체, 대칭관계, 대수기하학, 뇌터 환, 단사 사상, 단사 함수, 작은 범주, 이산 공간, 전단사 함수, 전사 사상, 전사 함수, 정의역, 집합, 충실한 함자와 충만한 함자, 치역, 유한형 사상, 올뭉치, 호모토피, 연속 함수, 피복 공간, 선택 공리, 손더스 매클레인, 토포스, 함자 (수학), 함수, 함수의 합성, 항등 함수, 쉼표 범주.

  2. 범주론

CW 복합체

호모토피 이론에서, CW 복합체(CW復合體)는 일련의 세포(細胞)들을 이어붙여 구성할 수 있는 위상 공간이.

보다 분해계와 CW 복합체

동치

수학과 논리학에서 동치(同値)란 두 문장이 논리적으로 같다는 것을 의미.

보다 분해계와 동치

동형 사상

수학에서, 동형 사상(同型寫像)은 서로 구조가 같은 두 대상 사이에, 모든 구조를 보존하는 사상이.

보다 분해계와 동형 사상

매끄러운 사상

수기하학에서, 매끄러운 스킴()은 국소적으로 아핀 공간과 같이 보이는 체 위의 스킴이며, 매끄러운 사상(-寫像)은 각 올이 매끄러운 스킴을 이루는 스킴 사상이.

보다 분해계와 매끄러운 사상

멱영 아이디얼

환론에서, 멱영 아이디얼(冪零ideal)은 아이디얼의 거듭제곱을 취했을 때 영 아이디얼이 되는 아이디얼이.

보다 분해계와 멱영 아이디얼

모임 (수학)

집합론에서, 모임()은 특정한 성질을 만족하는 집합(혹은 그 외의 수학적 대상)을 모은 것이.

보다 분해계와 모임 (수학)

모형 범주

호모토피 이론에서, 모형 범주(模型範疇)는 호모토피 이론을 전개할 수 있기에 충분한 구조가 갖추어져 있는 추상적인 범주이.

보다 분해계와 모형 범주

값매김환

상대수학에서, 값매김환(-環) 또는 부치환(賦値環)은 정수의 환의 국소화 \mathbb Z_와 유사한 성질을 가지는 정역이.

보다 분해계와 값매김환

범주 (수학)

범주론에서, 범주(範疇)는 추상적인 구조와 이를 보존하는 변환의 개념을 형식화한 것이.

보다 분해계와 범주 (수학)

범주론

수학에서, 범주론(範疇論)는 수학적인 구조와 그 사이의 관계를 범주라는 추상적 개체로 다루는 이론이.

보다 분해계와 범주론

고유 사상

수기하학에서, 고유 사상(固有寫像)은 복소다양체 사이의 고유 함수를 일반화하는 스킴 사상의 종류이.

보다 분해계와 고유 사상

공집합

공집합의 기호 수학에서, 공집합(空集合)은 원소가 하나도 없는 집합이.

보다 분해계와 공집합

공역 (수학)

수학에서, 어떤 함수의 공역(共域) 또는 공변역(共變域)은 이 함수의 값들이 속하는 집합이.

보다 분해계와 공역 (수학)

분리 사상

수기하학에서, 분리 사상(分離寫像)은 스킴 사이의 사상의 일종이.

보다 분해계와 분리 사상

분수체

상대수학에서, 분수체(分數體)는 정역에 대하여 정의할 수 있는 체이.

보다 분해계와 분수체

대칭관계

수학에서 집합 X 상의 임의의 두 원소 a, b에 대하여 정의된 이항관계 R이 대칭관계(對稱關係, Symmetric relation)라 함은 a R b이면 b R a를 만족한다는 뜻이.

보다 분해계와 대칭관계

대수기하학

수기하학(代數幾何學)은 대수적 방정식들로 정의될 수 있는 도형들 및 이들 사이의 관계를 연구하는 수학 분야이며, 현재 많은 수학 분야들 중 가장 복잡하고 발달된 분야 중.

보다 분해계와 대수기하학

뇌터 환

환론에서 뇌터 환(Noether環)은 아이디얼들이 오름 사슬 조건을 만족하는 환이.

보다 분해계와 뇌터 환

단사 사상

범주론에서, 단사 사상(單射寫像)은 두 사상의 등식에서 왼쪽에 합성되어 있을 때, 소거할 수 있는 사상이.

보다 분해계와 단사 사상

단사 함수

사 함수의 예 단사 함수가 아닌 예 (이는 전사 함수이기는 하다). 수학에서, 단사 함수(單射函數) 또는 일대일 함수(一對一函數)는 정의역의 서로 다른 원소를 공역의 서로 다른 원소로 대응시키는 함수이.

보다 분해계와 단사 함수

작은 범주

범주론에서, 작은 범주(-範疇)는 그 대상의 모임과 사상의 모임이 충분히 “작은” 범주를 말. 그 정확한 의미는 사용하는 수학 기초론에 따라 달라지는데, 예를 들어 그로텐디크 전체를 사용할 경우 대상과 사상의 집합이 사용되는 그로텐디크 전체의 원소이어야.

보다 분해계와 작은 범주

이산 공간

일반위상수학에서, 이산 공간(離散空間)은 모든 부분집합이 열린집합인 위상 공간이.

보다 분해계와 이산 공간

전단사 함수

전단사 함수의 예 수학에서, 전단사 함수(全單射函數,, bijective function)는 두 집합 사이를 중복 없이 모두 일대일로 대응시키는 함수이.

보다 분해계와 전단사 함수

전사 사상

범주론에서, 전사 사상(全射寫像)은 두 사상의 등식에서 오른쪽에서 합성되어 있을 때, 소거할 수 있는 사상이.

보다 분해계와 전사 사상

전사 함수

전사 함수의 예 수학에서, 전사 함수(全射函數) 또는 위로의 함수()는 공역과 치역이 같은 함수이.

보다 분해계와 전사 함수

정의역

수학에서, 어떤 함수의 정의역(定義域)은 그 함수의 값이 정의된 집합이.

보다 분해계와 정의역

집합

9개의 다각형의 집합을 나타낸 오일러 다이어그램 수학에서, 집합(集合)은 명확한 기준에 의하여 주어진 서로 다른 대상들이 모여 이루는 새로운 대상이.

보다 분해계와 집합

충실한 함자와 충만한 함자

범주론에서 충실한 함자(忠實-函子)는 임의의 사상집합에 제한한 것이 단사 함수가 되는 함자를 말. 이것이 전사 함수인 경우에는 충만한 함자(充滿-函子).

보다 분해계와 충실한 함자와 충만한 함자

치역

수학에서 함수의 치역(値域)이라고 하는 것은 함수의 모든 "출력"값의 집합이.

보다 분해계와 치역

유한형 사상

수기하학에서, 유한형 사상(有限型寫像)은 대략 유한 개의 변수에 대한 다항 함수에 대응하는 스킴 사이의 사상이.

보다 분해계와 유한형 사상

올뭉치

위상수학에서, 올뭉치() 또는 올화(-化) 또는 파이버화(fiber化)는 올다발의 일반화이.

보다 분해계와 올뭉치

호모토피

수적 위상수학에서, 호모토피() 또는 연속 변형 함수(連續變形函數)는 어떤 위상 공간을 공역으로 하는 특정한 연속 함수이.

보다 분해계와 호모토피

연속 함수

위상수학과 해석학에서, 연속 함수(連續函數)는 정의역의 점의 "작은 변화"에 대하여, 치역의 값 역시 작게 변화하는 함수이.

보다 분해계와 연속 함수

피복 공간

원상은 U의 분리합집합이다. 위상수학에서, 피복 공간(被覆空間) 또는 덮개 공간은 어떤 공간을, 여러 겹의 "피복"을 이루며 둘러싸는 위상 공간이.

보다 분해계와 피복 공간

선택 공리

선택 공리의 형상화. 선택 함수는 각 집합 S_i를 그 속의 원소 x_i\in S_i로 대응시킨다. 집합론에서, 선택 공리(選擇公理,, 약자 AC)는 공집합이 아닌 집합에서 한 원소를 고를 수 있으며, 또한 이를 무한 번 반복할 수 있다는 공리이.

보다 분해계와 선택 공리

손더스 매클레인

손더스 매클레인(1909–2005)은 미국의 수학자.

보다 분해계와 손더스 매클레인

토포스

범주론, 논리학과 대수기하학에서, 토포스(복수)는 어떤 공간 위의 층들의 범주와 유사한 성질을 갖는 범주이.

보다 분해계와 토포스

함자 (수학)

범주론에서 함자(函子)는 두 범주 사이의 함수에 해당하는 구조로, 대상을 대상으로, 사상을 사상으로 대응시.

보다 분해계와 함자 (수학)

함수

수를 상자에 비유한 그림. 수학에서, 함수(函數) 또는 사상(寫像)은 첫 번째 집합의 임의의 한 원소를 두 번째 집합의 오직 한 원소에 대응시키는 대응 관계이.

보다 분해계와 함수

함수의 합성

수 g\circ f. 예를 들어 (g\circ f)(c).

보다 분해계와 함수의 합성

항등 함수

실수 위의 항등함수의 그래프 수학에서, 항등함수(恒等函數, identity function), 또는 항등사상(恒等寫像, identity map), 항등변환(恒等變換, identity transformation), 단위변환(單位變換), 항등관계(恒等關係, identity relation)는, 어떤 변수도 자기 자신을 함숫값으로 하는 함수 f(x).

보다 분해계와 항등 함수

쉼표 범주

범주론에서, 쉼표 범주(-標範疇)는 같은 공역을 갖는 두 함자로부터 정의되고, 함자들의 공역의 사상들을 대상으로 하는 범주이.

보다 분해계와 쉼표 범주

참고하세요

범주론

또한 오른쪽 유일 올림 성질, 오른쪽 올림 성질, 약분해계, 왼쪽 유일 올림 성질, 왼쪽 올림 성질로 알려져 있다.